skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fonseca, R A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims.Global particle-in-cell (PIC) simulations of pulsar magnetospheres are performed with volume-, surface-, and pair-production-based plasma injection schemes to systematically investigate the transition between electrosphere and force-free pulsar magnetospheric regimes. Methods.We present a new extension of the PIC code OSIRIS that can be used to model pulsar magnetospheres with a two-dimensional axisymmetric spherical grid. The subalgorithms of the code and thorough benchmarks are presented in detail, including a new first-order current deposition scheme that conserves charge to machine precision. Results.We show that all plasma injection schemes produce a range of magnetospheric regimes. Active solutions can be obtained with surface and volume injection schemes when using artificially large plasma-injection rates, and with pair-production-based plasma injection for sufficiently large separation between kinematic and pair-production energy scales. 
    more » « less
  2. Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations. 
    more » « less